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A number of papers have considered the problem of the motion of a solid 
body with cavities partially filled with liquid (cf., for example fl-61). 
The equations of motion were based upon the assumption of potential 
motion of the liquid and the usually assumed theory of waves of small 
amplitude and theory of small oscillations of a solid body. Following 
Poincar8, the displacement of the. liquid from the equilibrium position 
was expanded in a certain series of functions with time-dependent coeffi- 
cients, and the problem was reduced to an infinite set of equations of 
second order. 

The problem of stability of equilibrium of a mechanical system acted 
upon by potential forces may be solved exactly with the help of a theorem 
of Lagrange on the stability of equilibrium, in which state the potential 
energy has an absolute minimum. The criterion for the minimum potential 

energy of a system with a finite number of degrees of freedom is well 
known and is the condition for positive-definiteness of the second vari- 
ation of the potential energy. If a system has an infinite number of 
degrees of freedom, then the problem is considerably more complex. The 
expansion of the equation of the disturbed surface in a certain series 
of functions reduces the problem of minimization to a problem of the 
positive-definiteness of an infinite quadratic form, which is the result 
of taking the second variation of the potential energy. For the case of 
a heavy fluid it was shown [31 that this quadratic form is positive- 
definite when a certain quadratic form in the variations of the coordi- 
nates of the solid body is positive-definite. The latter quadratic form 
is the second variation of the potential energy of the rigid body and 
the frozen liquid, to which has been added a correction for the liquid 
contents. The correction for the liquid contents is a quadratic form in 
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the variations of the coordinates of the solid body with coefficients 

which are sums of an infinite number of terms. 

From the condition of positive-definiteness of the sum of these 

quadratic forms it would have been possible to carry out a rigorous de- 

rivation of the stability of equilibrium of the system in the sense of 
Liapunov; however, for application this sum had to be calculated, and 
this was done in 171 only for a particular case. 

Below the problem of minimum potential energy of the system also re- 

duces to a problem of minimizing a certain function of the coordinates 
of the solid body, consisting of the potential energy of the frozen 
system together rith a nonpositive correction for the liquid contents. 

The expansion of this correction starts with the quadratic form in the 
VariatfOnS of the coordinates of the solid body with coefficients in the 
form of double integrals of known functions over known regions. 

1. we consider a vessel having the form of a closed rectangular 
paraflelepiped free to rotate about a fixed axis y passing through the 
axis of symnetry of the vessel and perpendicular to its sides. If the 
heavy vessel is filled with a heavy liquid, then in equilibrium the 
walls of the vessel are vertical, and the free surface of the liquid is 
horizontal, 

Let the straight line ab be the projection of the y-axis on the sur- 

face of the liquid in the equilibrium position (we will imagine it, to be 
rigidly attached to the vessel) and let P be a plane rigidly fixed to 
the vessel and coincident with the free surface of the liquid in the 
equilibrium position. If the vessel is inclined at an angle 8 to the 
vertical, then the potential energy of the liquid in this position will 
have a minimum in comparison with its other possible positions if its 
surface is the horizontal plane P,; that is, the position of an incom- 

pressible liquid, hounded above by the plane P,, will be possible if P, 
passes through the straight line a&, and consequently satisfies the con- 
dition of conservation of volume. We call this position of the system 
the position 0, P,. 

We put the system initially in the position 8, P, imagining that the 

liquid is frozen, and we let 6Ui be the variation of potential energy of 

the system for this displacement. lhen we transfer the liquid located 

above the plane P, and below the plane P, so that it is below the plane 
P,, and we obtain the position 8, P,. The variation SU2 in the potential 

energy for this displacement will obviously be ne 
fi 

a::ve. The total vari- 

ation inltk potential energy of the system is 6u = W, + W2 < su, 

where 6U depends only on the angle 8. 

Consequently, in order that 6U be positive, it is necessary and 
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sufficient that SU’ ’ 2 he positive-definite. We note that for this it is 

necessary that 611, be unable to take negative values. ‘Thus the problem 
of the minimum potential energy of the system is reduced to the minimiza- 
tion of 6U’ + 2, which depends only on the angle, and the solution of 
this problem presents no difficulty. 

In the general case we imagine a solid body with a cavity partially 
filled with a homogeneous incompressible liquid of density u. 

Let the position of the solid body relative to a fixed system of co- 
ordinates 0, x, y, I be given by scleronomic and holonomic generalized 
coordinates qi (i < 61, and let there act on it steady forces with 
potentials U'(qi). The volume forces acting on the liquid are also 
assumed to have a potential W(x, y, z) adr for an element of volume d-r. 

When the system is in equilibrium, let the values of the qi be zero, 
and let the liquid occupy a certain amount of a simply connected region 
D,‘, bounded by S, the surface of the cavity, and by sections of the sur- 

face !V = ok’ 

Let Qk be a certain point of the free surface of the liquid, M, the 
geometric positions of the first points of intersection of continuous 
curves with origin at Qk and lying on W = ok, with the surface S. ‘lhe 
curve Mk will be called the boundary of the surface I!‘= ok and the volume 
of the liquid will be called V,. We do not exclude from consideration 
the case where the simply connected region occupied by the liquid is 
bounded by the sides S, and by a surface W = ak with a boundary consist- 
ing of several closed curves M kj’ 

It is clear that in the equilibrium state the liquid volume does not 
contain points w > ok. 

Let Tk be a certain point of the boundary M, of the free surface, 
nl(?‘$ a unit vector normal to the surface S at the point T, and 
directed into the cavity, ng(Tkl the unit vector normal to the surface 
w= ok directed to the side a > ak, and 8(Tk) the angle between these 
normals measured from nl to n2. We assume that the angle 0 is bounded by 
certain constant limits n > 8, > 8(T& > 0, > 0 for all points Tk and 
for any k. We assume that the vector n1 varies continuously with the 
location of the points of the surface S in the neighborhood of the bound- 

ary M,, and we suppose that the unit vector n2 normal to the family of 
surfaces W = a varies continuously with respect to x, y, z in that same 
neighborhood. We also assume that none of the ok is the largest of all 
the possible values which, W can take on in the neighborhood of !V = ok. 

Let Mkj be a certain closed curve belonging to the boundary of the 
region for a certain value ak and given by the equation 
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2 = 5j (4 ak, P”), Y = Yj It, ak~ P”>, 2 = zj (t, ak, p”) (I.11 

where Nn, y, z) = PO is the equation of the surface of the cavity in 
the neighborhood of the boundary, t is a parameter varying between the 
limits 0 < t < Z”, and the functions xi, y ., zj are periodic in t with 
period lo. According to the assumptions ma e concerning the properties 4 
of the normal, the vector 

i j k 
l?W aw aw 
-3Fay F=i!!!L!E 
a@ acD a@ ( ay a2 -FZ$ i+... 1 
'ax F a2 

vanishes nowhere in a small region of the curve M, j. Gnsequently, 
according to the existence theorems for implicit functions there exist 

functions 

2 = “j (1, ak -k Aa, p”, %), Y = Yj (h ak -b Aa, p”, Qt) 

2 = zj (h ak -/- Aa, 8”, !h) (O<t<,Z, id61 

(I.4 

which are solutions of the equations 

w (z, y, 2) = ak + Aa, Q’ (2, y, 2, rri) = p”’ (1.3) 

where @ ’ = PO is the equation of the surface of the cavity when the 
solid body is displaced from its equilibrium position. Fhen Zqi2 t 

Aa - 0, the functions (1.2) transform continuously into the functions 
(1.1). ‘lhe continuity of these functions is uniform in t, hence they 
will also be periodic with the same period Z”, and consequently the 
curve (1.2) is closed. ‘lhis means that the region D,‘(Aa, ?i)’ bounded 
by the surface I = ak + Aa and the surface S, and which transforms con- 
tinuously into the region D,O as Iqi2 + Aa -t 0, will also be simply 
connected and will contain only the points W < ak + Aa. 

If qi varies in the closed region r2 = Z qi2 < H2, where H > 0 is a 
sufficiently small constant, then for every aXk a constant yk > ak can be 
found such that for any qi taken from this region, the surface of the 
cavity S and the surfaces W = yk, R = ak + Aa will bound a closed region 
C,(Aa, y, qi) which does not contain the point W < ak + Aa. 

Here, as well as in what follows, by the surface W = aC + Au we will 
mean the portion of this surface which as Zqi2 + Aa2 - 0 transforms 
continuously into the free surface W = ark of the liquid in the equi- 
librium position. Tbe existence of the surface Ii’ = yk follows from the 
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previous considerations as long as yk is close to ak. However, in many 
cases of practical importance yk may be taken sufficiently far from 
ak + Aa, but if the region bounded by the surface S is closed, then it 
may turn out that any possible displacements of the liquid do not cross 

a certain surface W = yb, where the value yk depends only on the radius 

of the sphere 2 r = H. The surface yk, as we shall see below, plays a 
significant role in the determination of stability. 

2. We now assume that for given qi the liquid completely fills the 
region D,“(Aa, qi). It is not difficult t.0 see that the potential energy 
of this liquid volume has a minimum with respect to all possible posi- 
tions of the liquid for given qi which do not exceed the limits of the 

region C,(Aa, yK, qi). Actually, when any particle of liquid passes 
across the surface B = aR + Aa it goes into the region C,fAa, yk, qif 
and as a consequence its potential energy is increased. Ihe position of 
the fluid occupying the whole region ,Qk” (Aa, qi) will be possible if the 
volume Vj” of this region equals the volume V,, i.e. the condition of in- 
compressibility will be satisfied. 

vie now address ourselves to the determination of the Aa for which 

this condition will be satisfied. 

If the liquid is frozen in the equilibrium position and then the 

frozen system is displaced, then the equation of the frozen surface for 
any position of the body will be !li(r’, y’, z’) = ak$ where 0, x*, Y’, Z' 

is a system of rectangular coordinates attached to the solid body and 
coincident with the fixed system 0, x, y, z in the equilibrium position. 
In the following we will also call this surface the frozen surface and 
denote its boundary by hfk ’ , while the region containing the frozen liquid 
we will call I), . 

We denote by E,(Aa, qi) the “difference” of the regions Dk”(4a, qif 
and D 

k 
‘, i.e. the totality of points belonging to I),’ and not, beloneng 

to Dk (Aa, qi), which make up the region F,, and the totality of points 
belonging to Dd and not belonging to D,‘, which constitute the region 

Gk. 

As was shown above, the region F, consists of the points 

TV (x’, y’, 2’) < Uk, W (z, y, z) > ak + Aa, inside S 

and the region G, consists of the points 

W (5’, y’, 2’) > akr W (2, y, z) < ak + Aa, inside S 

‘Ihe region E, is the “sum“ of the regions G, and F,. 

We now assume that there exists a one-to-one transformation which is 
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continuously differentiable 

2 = 5 6, rtt 07 Y = Y 63 91 D1 2 = z(& tl, Q 

in a certain neigh~rho~ of the free surface R’ = ak, and that in this 
neighborh~d the Jacobian of the transfo~ation is 

We also assume that aW/a< is bounded by the limits O<a<3ii'/2~<b 
and is continuous in this same neighborhood, and consequently l/u > 
ag/aV > l/b > 0 in this neighborhood. ‘Ihe latter two limits are not of 
importance, but are introduced to simplify the proof. 

The condition of conservation of volume takes the form 

Fk (2.1) 

Let g’, n’, C_’ be curvilinear coordinates connected rigidly to the 

solid body and transforming into {, q, 5 in the equilibrium position, 
and let the coordinates c’, q’ vary in the region Pki in ranging over 
the portion of the frozen surface bounded by the closed curve Mkj* be- 
longing to boundary Mk’. 

Let the function RX’, y’# z’) transform into the function W’(<‘, 
n’, 5’) under the tr~sfo~tion to coordinates c’, q’, 5“ while the 
funct&n Wfx, y, z) transforms into the function 

where O(r) is a small quantity of higher order than r. Let 5 vary 

according to the equations 5’ = Y(c’, q’, ak f ba, qi), 5’ = Y(C’, fl’, 
ak, 0) = Y" as the point moves along the surfaces W” = a,l, + ba, W’ = ah 
regpectively, where the right hand sides of the equations are single- 
valued, continuous in all the arguments, and differentiable with respect 

to a. 

‘lhe condition of conservation of volume (2.1) may be written 

svk = Ti\ dk’dq’ f J d5’ + 0 (r’) 
kj 

(2.2) 

Here O(r ‘) represents the algebraic sum of the volumes adjoining on 

#kj ' and bounded by the following surfaces: the cylinder $’ = $,‘(t), 
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? ’ = n,‘(t) 

F,, and a minus sign in the opposite 
case. lhe section of any such region cut by a plane R perpendicular to 
the contour M, jv at the point T, will be a curvilinear triangle T,AB 
with the side TkA lying on the cylinder, the side TkB lying on the sur- 
face of the cavity, and the side AB lying on the surface 5’ = Y(IV(x, y, 

z) = ok + Aa). The height of this triangle dropped from the vertex Tk 
will vanish together with Au.,lhe angle 3 - 8 as r’ - 0, and consequently 
for r’ sufficiently small this angle lies between the limits II > e1 $ 
B > 0, > 0. 

As I“ - 0, the angle A approaches the angle ATkL, where TkL is the 
line of intersection of the plane R and the frozen surface. It is not 
difficult to see that this angle also lies between similar limits. 
Actually, on the frozen surface l/o > a<‘/ 3 W’ > f/X, since it is clear 
that 3 j/alV on the free surface of equilibrium is identical to a$‘,/aF’ 
on the frozen surface. This means that the angle tp between the curve 
Ej = co, n = no, directed towards the side a > a*, and the frozen surface 
at all points exceeds a certain limit ‘pa > 0. From the continuity of 
a<‘,/ 3% it fallows that the angle A TkL also lies between the limits 

“+&-ATkL’ip, > 0. The above considerations show that the area 
of the triangle TkAB is of order r ” and is of the same order as the 
algebraic sum of the volumes of the regions under consideration. 

Introducing in place of 5 the variable P = R” - ok, we rewrite equa- 
tion (2.2) as follows: 

where the partial derivative a I” y?!gi is calculated on the frozen sur- 
face ‘p’ = Yo Noting that 

we rewrite i2.31 in the form 

Since vk > 0, this equation has the unique solution 
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Thus for every k 
there is a possible 

there exists a Aa, such that for any r < H, 
position of the liquid, completely fill,+ the 

l'egiOn Dk”(bIk, Q i) , for which the potential energy of the liquid attains 
a minimum in comparison with all other possible positions within the 
region ck + 0;‘. 

Aak = + 3 akiqi + 0 (r’) 
3 

(2.4) 

3. ‘Ihe potential energy of the system will have in this sense a 
minimum in the equilibrium position if the function 

u min = U%,)+a~ \ WA 

*k” 

which depends only on qi has a minimum. It may be represented in the 

form 

u mln= U’ +XT~ \ Wdr+[oz\ Wdwsx\ Wdr] 
k Dk’ ’ Dk- k Dk’ 

We denote the sum of the first two terms, representing the potential 

energy of the frozen system, by II, and the remainder, enclosed in 
brackets, by u2. We note that by hypothesis U2 is never positive. ‘Ihe 
second variation of II, may be found by the usual method, and therefore 

we address ourselves to the calculation of iJ2; we have 

. 
u2k =(T W&z--o s Wdz=a (ctk+/.i)dT-U s i (ak+ p) dz = 

*k’ Gk Fk 

The last equality was written on the basis of the condition of con- 

servation of volume (2.1). Making further transformations as in Section 

2, we obtain 

U2r = 6 2 \\ dt’ dq’ ‘ik pJ a$ dp - 0 (J2) = 
j P 

kj “k 

=- 
4 as 

(Aak2 - vk2) J” $ dt’ dq’ + 0 (r”) = 
j Pkj 
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Using the well-know inequality 

RI \,I 

one may convince oneself that the sum of 
take on positive values. However, it may 
on all the coordinates. For example, let 
ordinate and let W” have the form 

the second order terms may not 
happen that II, does not depend 
U,(q, 1 depend only on one co- 

where O(ql)/ql - 0 as q1 4’0 uniformly for all <‘, q’, j’ in the 

neighborhood of the frozen surface and for all permissible q2, qJt . . . . 
Yhen repeating the previous arguments, we obtain 

u 

If it turns out that 

for =Y q2’ q3# .--, then the potential energy of the system will have a 
rnin~m~ with respect to cfl and for arbitrary disturbances of the fiquid 
which do not cross the surface W = yb. ‘Ihis case occurs in the problem 
of the stability of equilibrium of a pendulum filled with a heavy liquid. 

It is necessary to note also the following circumstance. All of the 
double integrals above depend only on the form of the free surface in 
the position of eWlibrium, i.e. the form of the function I and the 
form of the curve Mk of intersection of the free surface and the walls 
of the cavity, and they are independent of the form of the surface of 
the cavity in the neighborhood of this curve. This means that the second 
variation of the potential energy of the system does not change if the 
shape of the cavity changes. so that the potential energy of the froxen 
system and the curve Uk remain as before. The second variation of the 
potential energy depends only on the volume and surface integrals, hence 
it does not change sign if the cavity S is replaced by the cavity S’, 
provided the volume consisting of the points of S’ not belonging to S 



904 G.K. Patharitskii 

and the volume consisting of the points S not belonging to S’ are sufff- 
ciently small, and the whole region Dk” transforms continuously into a 
simply connected region. This is also true if the volume Vk of the liquid 

changes by little and the surface of the cavity is subject to the condi- 
tion that the “projection” of the boundary Mk on the “plane” 5 = go 

varies by a sufficiently small amount, i.e. the area bounded by the old 
and new Projections is little changed. This means that if some stability 
criteria are obtained from the sign of the second variation, then they 
will be valid for variations in the shape of the cavity and the quantity 
of the liquid which are small in the above sense. 

4. Following Liapunov [8], we introduce the following definition. We 
assume that the liquid belonging to a certain region Dko in the equi- 
librium state is perturbed, and we consider the surface of the liquid at 
an arbitrary instant during its perturbed motion. From any point of this 
surface we imagine a pencil of straight lines joining it with all points 
of the surface of the equilibrium volume vk, and from the segments of 
these lines between the chosen point of the liquid surface and the equi- 
librium surface we choose the smallest. By the equilibrium surface we 
mean the free surface and the walls of the cavity wetted by the liquid. 
Considering all points of the disturbed surface of the liquid, we choose 
the largest of these segments. Ve denote this positive quantity by N and 
call it the distance of the surface of the liquid from the equilibrium 
surface. 

As before let Vk be the volume of the liquid and let qk be the volume 
all points of which belong to both of the.two regions, one bounded by 
the surface of the liquid and the other by the equilibrium surface:h 
call the difference vk - qk the displacement of the liquid from the 
equilibrium state and denote it by b. If all possible surfaces of the 
liquid are considered for which the distances from the equilibrium sur- 
face are equal to a given quantity N, then it is clear that for these 
surfaces a may take on all values between zero and a certain limit de- 
pending on N which for N = 0 reduces to zero. Any single-valued and con- 
tinuous function of N taking on only those values that A may attain for 
the same N and reducing to zero for N = 0 we will call a possible dis- 
placement and denote q(N). We assume also that the motion of liquid is 
such that N and A are continuous functions of the time t. 

Definition. We impart to the system arbitrary displacements and velo- 
cities and consider the subsequent perturbed motion. If fqio2 = ro2, 
the initial distance N, from the equilibrium surface and the initial 
magnitude of the kinetic energy To may be chosen sufficiently sdl fbf 
all possible values of the rest of the initial data, so that r, the dis- 
tance N of the liquid surface from the equilibrium surface and the 
kinetic energy T remain less than certain prescribed limits, no matter 
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how small, for all times during the motion or at least until the dis- 
placement: of the liquid from the equilibrium position does not become 
less than a certain prescribed possible displacement, no matter how 
small, then the equilibrium state under consideration is stable. 

All possible initial data must be subject.to the condition that the 
functions N and A corresponding to these quantities must be continuous 
functions of t during the entire motion. 

For our problem, however, it will be convenient to consider the dis- 
tance N and displacement A of the perturbed surface, not from the equi- 
librium surface, but from the boundaries of the region II,“. 

We consider now the region CkCyK, Aa,, qif 

w < Tkr W > ak -f- hk within s 

and treat n1 as the minimum distance of a point on the surface W = 
from the boundaries of the region II’: Varying r within the limits r P < Ii’, 

where H r 0 is some small constant, we find N,, the minimum value of nl_ 
We consider any possible displacement cpk(N), and from all possible posi- 
tions of the system safisfying the inequalities A > q(N), N GN,, r < H, 

we choose that position for which I! attains its smallest possible value 

We choose the 
are satisfied: 

ff the energy 

then 

initial conditions so that the following inequalities 

T,+ &,<UN~, Ao> (Fk(Nd 

of the system is conserved or if ener~ is dissipated, 

o<U<UNk ior A > (Pi (Pi) 

Actually, if U becomes zero, then before that happens N, which varies 

continuously, must become equal to N,. ‘Ihis may occur only if the in- 

equality A 2 q,(N) is violated before 11 becomes zero, since U > 0 for all 

A > Q(N) s 

If however the inequaljty B >qk(N) is not violated, then neither is 

the inequality 0 < U < Utv . 
k 

If the last inequality is satisfied, then the inequality 

h’<Nk, r<H,T<u,, 
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will be satisfied also. 

Thus we come to the conclusion that in order that the system be stable 
in the above-mentioned sense, it is sufficient that Umill be a positive- 
definite function of qi. This proof, with certain differences in detail, 
was carried out by Rumiantsev [9]. 

Up to now we have been concerned with a cavity with one simply- 
connected volume Dko. If there are several such volumes, then if all of 
the quantities having index k are understood to refer to the kth simply- 
connected volume, and T is understood to be the kinetic energy of the 
system, then by a similar argument we obtain the analogous results. 

We continue the discussion, considering ok0 to be a single simply- 
connected volume. 

If the cavity and the function W are such that the region, lying with- 

in the cavity and outside the region Dk’: into which a liquid particle 
may pass from the region Dk “without crossing the walls of the cavity, 
does not contain the points W < ak + Ask, then the position of the liquid 
completely filling the region Dk”, attains the minimum potential energy 
of the liquid for given qi in comparison with all attainable displace- 
ments of the perturbed surface. In this case a more definite criterion 
regarding the stability of the liquid may be obtained. This definition 
also follows Liapunov [8] . However, he did not make use of this defini- 
tion, since in using only one energy integral, stability in the sense of 
this definition can be shown only for one of the problems considered by 

him - the problem of the stability of the spherical equilibrium shape of 
a liquid mass under the influence of gravity. 

Definition. If for any positive II, u’, 6 less than certain limits 

there can be found limits Uo, u,, ‘, 6, such that for arbitrary initial 

values of rO, the kinetic energy T,,, and the displacement A,, subject to 

the inequalities 

ro < Ho, To < o’o, Ao < 6, 

the inequalities 

r < H, T<o’, A<< 

will be satisfied for all times during the motion, then this equilibrium 

state of the system is stable. We will call this stability with respect 

to the displacement r and T. 

Let Urn:. be the minimum value of Umill on the sphere r = H and let 
d, > 0 be a constant such that for A > ek, r <H the inequality u > u,y,, 
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is satisfied. 

If the system conserves energy or if energy is dissipated, and if T,, 
rO and A, are chosen so small that the inequality 

is satisfied, then the inqality 

will be satisfied for all times during the motion, as will the inequal- 
ities 

r<Ht T < Kll”,*, A < bk 

which are consequences of them. 

This means that if the cavity and the function W are such that the 
position of the liquid completely filling the region fi, makes the 
potential energy of the liquid a minimum with respect to all possible 
displacements of the liquid surface, and if Umi,, is a positive-definite 
function of qi, then the equilibrium position of the system will be 
stable with respect to r, T, 4. 

If the cavity has several simply connected volumes f),O which are not 

interconnected, i..e. a particle may not pass from one volume into another 
without crossing the walls of the cavity, ‘the definition and the proof 
are similar, 

Let the body in the equilibrium position have two simply connected 
regions Bxo, 4” corresponding to the same value Q = a1 = az, and let the 

cavity be such that the liquid may be transferred within the cavity from 
one volume into the other. 

We consider a possible position of the liquid, corresponding to some 
values of qit 

D,“, 

and where the lipid completely fills the regions D,” and 
bounded at the “top” by the surface a + Aa, which is the same for 

both regions, and where this surface is obtained from the condition of 
conservation of the sum of the volumes, V, + Vz. If the empty portion of 
the cavity does not contain the points W< a + Aa* then in such a posi- 
tion of the liquid its potential energy will reach a minimum with respect 

to any displacements of the liquid particles which are possible for given 
qi, and the condition of definiteness of the function Cumin will be a 
sufficient condition for stability with respect to r, T, A. 

Since we make use of the condition of conservation of the sum of the 
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volumes, it is not difficult to see that the conditions of positive- 
definiteness of UmiB are obtained the same as they would be if the 
regions DIO and Dzo were connected by an infinitely thin channel, lying 
completely underneath the surface W = a, i.e. if the problem were solved 
for a simply connected volume. 

5. Exarptt f. The problem of Sretenskii [13. We consider a certain 
generalization of the problem of Sretenskii. Let the constraints on the 
body be such that they allow only translational displacements of the body 
from the equilibrium position, and let its cavity be filled with a heavy 
liquid. If the potential energy of the frozen system has a minimum in the 
equilibrium position. then the equilibrium is stable. Actually, for any 
fixed displacements of the body the minimum potential energy of the 
liquid will be attained in the case where the surface of the liquid be- 
comes horizontal and stationary with respect to the body. Consequently, 
in this case II, E 0 and II will always be positive if U, proves to be 

positive. It is also not difficult to see that if the cavity is covered 
by a horizontal lid, if the walls of the cavity are vertical, and if the 
liquid occupies a single simply connected volume, then the stability 
with respect to the displacement F, 7’ will follow from the positive- 
definiteness of Ill. 

Example 2. A spherical pendulum containing a liquid. 

We consider a heavy solid body with a fixed point 0 and a cavity 
filled with a heavy liquid. The fixed axis E is directed upwards. We 
choose as generalized coordinates the Euler angles ‘p’, v’, 8’. We denote 

by - l(1 > 0) the coordinate of the center of gravity of the frozen 
system in the equilibrium position, and by M its mass. It is convenient 
here to choose the coordinates x‘, y’. Z’ in the moving system for the 
parameters {‘, q’. 5’; for the case of a heavy liquid 

W = gz = g [ 2’ cos 8’ + sin 0’ (I’ sin cp’ + y’ cos cp’)], ael 
I 
B,=50 = g (2’ sin rp’ + y’ cos rp’) 

2am = - et* (J’ - *) = - a tcp) BIS, J' = ag (x’ sin cp’ + y’ cos 9’)” dz’ dy’ 
P 

ha 
- mdp=-crgv, h = b (I’ sin cp’ + y’ cos cp’) dx’ dy’, Y = I\ dx’ dy’ 

P 

The explanation of the notation introduced here follows: P is the sur- 
face consisting of the points of the frozen surface; J’ is the moment of 
inertia of the surface P about the axis X’ sin 9’ + y’ cos 9’ = 0, where 
a unit area is assumed to have mass og; ugh is the first moment of the 
surface about the same axis; v is the area of the surface, I is the mass 
of the surface, d the distance from the center of gravity of the surface 
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the axis sin 8’ y’ co8 = 0, a(q) the of inertia of 

this surface about the parallel axis through the center of gravity. 

Let Ag be the maximum value of a(q). Then the equilibrium position of 

the system will be stable if 

1 -;>o 
If the cavity is a closed cylinder with generators parallel to the z- 

axis, then there will be stability with respect to 8, T, 6. This result 
was obtained by Moiseev [T] for a cavity having a rectangular surface P 

symmetrical about the projection of the axis y’ on It. 

Exaaple 3. The stability of a pendulum filled with a liquid in gravi- 
tational and centrifugal force fields, We consider a right-hand rectangu- 

lar coordinate system X, y, z with origin at the fixed point 0 and the 
vertical z-axis directed upwards, rotating about the z-axis with a con- 

stant angular velocity 0, and a heavy solid body able to rotate about the 
y-axis with respect to the X, y, t system. In the following we will under- 
stand motion to be motion with respect to thia system. The cavity in the 
body is assumed to be filled with a homogeneous incompressible heavy 
liquid. The body and liquid will be in equilibrium if the center of 
gravity of the system lies on the z-aris at a distance I below the point 
of suspension, while the axis is a principal axis of inertia of the 
system at the point 0. The free surface of the liquid will take the shape 
of the paraboloid 

W 
-=z- 

R 
g +* + y9) = z - p (CC* + ~~1 = - a 

We assume that the cavity has the form of a surface of revolution S 

about the z-axis and is intersected by the paraboloid along two circles 

lying in planes z = - h and z = - h - R with centers on the z-axis and 
radii d, and d, respectively: 

We 

dl>de, dlsp=a-hh, &$=a-h-H 

recall also that the normals to the surfaces W/g = - a and S form 

a noneero angle on the lines of intersection. 

If 0, x’, y’, z’ is a moving coordinate system attached to the solid 

body and coinciding with 0, X, y, E in the equilibrium position, and 8’ 
is the angle of deviation of the x1-axis from the z-8x18, then the 
formulas for the coordinate transformation are 

z=2’COStY-a’sinw, y=f, i=z’sin0’+z’cosg’ 



910 G.K. Pozharitskii 

The functions in W/g are written in terms of these variables as 

w = - z’*p sin2 8’ + (cos 8’ + p2’ sin 28’) z’ - @Cz co9 8’ - @y’” + x’ sin 0 

: aw 
- 7 = - z’s@ sin 28’ + (- sin 8’ + 2&v’ cos 2@) z‘ - &c’~ sin 20 + ~8 cos 6 
g 38 

Taking 8’ = 0, we obtain 

1 aw 
---7 

g 80 O’=_o 
= 2px*z’ + 2’ 

On the frozen surface R/g = Z’ - P(x’~ + y”) = - a, hence 

- 7 = 2’ -+ 2$2’[P (zf2+ Y’~) - a: 
g 80 

1n moving cylindrical coordinates z’~ x’ = p cos I, y’ = p sin y We 

have 

1 awn0 
--=pcCOSY+2~pCOSY(~p~-~) 
g 3% 

The region of integration on the plane Z’ is bounded by the circles 

p = d, and p = d,(d, > dz)_ In order to calculate 6’1/x, as was shown 
above, it is necessary to calculate: 

(4.1) 

d’i’ [p cos Y + Zpp cos Y @p2 - a)lz = 

da 0 

I wBf2_ 
d, 

c 2 * 
t(i - 243) P + %3B~s12 pdp = 

4 
+ 2p* (l - Zap) (Q* - das) 

3 
+ p” (d2 - d#) 

2 1 
We now assume that the body is homogeneous and symmetrical about the 

x*-axis and the cavity is a circular cylinder with axis t’, radius R and 
height if, with walls at Z’ = - h, Z’ = - k - H. Let the volume of the 
liquid in this cylinder equal EV, where V = .rrR’fi is the volume of the 

cyl inder , and E is the coefficieht of fullness. 

Let the angular velocity o of the body be increased, starting from 
zero. The paraboloid initially will be intersected by the lateral surd 
face of the cylinder. Then, depending upon E. R. and H, it may be inter- 
sected by the lateral surface and the bottom end or by only the top end, 
and then for o sufficiently large it will be intersected by both the top 
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and bottom ends. We consider the last case, for which 

Let a1 = a - h - H be the distance from the vertex of the paraboloid 

to the bottom end of the cylinder. 
the form pR2 - ii > 

Then the previous inequality takes 
al > 0. From the condition of constancy of volume of 

the liquid we find 

ar=3IP(i--c)-; (4.2) 

This is correct if j3 is larger than the greatest of the numbers 
H/2R2, and H/2R2(1 - E). 

Under these conditions formula (4.1) is simplified to 

& 
&BU* = - JJyf 

l-28h 

s 

PBfl+2P(BpB-a)]2p~p=-~ * 
$634 I 

[U - (i - zap)] usdu 

4 I--%W+h) 
u=1+23(3pa--a) 

Denoting hl = h + R/2, integrating and making use of (4.2), we obtain 

8v.J~ = - 0’%sgN 
h# & 7 f- 

Ii* (I- e) 

43 
-P(1 - e) Rl+ 

+ Ra (I- 8) h?P + 
R8 (I- E) pH= 

12 I (4.3) 

The potential energy of the frozen system is 

ui z f&11+ da) g (1 -. CO.3 W) - (B + L?i - 3~) /3g 

JZ = V3 + Bl) co@ 8' + (C + Cl) sins 8’ 

Here “1S w2 are the masses of the body and the liquid, 1 I, 1x are the 
distances of the centers of gravity of the heavy body and the frozen 
liquid from the point of suspension, RI, B2 are the moments of inertia 
of the body and the frozen liquid about the t-axis. and C, C1 are the 
momenta of inertia of the body and the frozen liquid about the y*-axis. 
For the second variation of [II we obtain 
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As a result we obtain 

In order that the condition of positive-definiteness of S2U will not 
be violated as o increases, it is sufficient that 

It is not difficult to see that in the given case the positive- 
definiteness of g21.1 guarantees stability with respect to 8’. T, h, 
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