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A number of papers have considered the problem of the motion of a solid
body with cavities partially filled with liquid (cf., for example [1-6]).
The equations of motion were based upon the assumption of potential
motion of the liquid and the usually assumed theory of waves of small
amplitude and theory of small oscillations of a solid body. Following
Poincaré, the displacement of the.liquid from the equilibrium position
was expanded in a certain series of functions with time-dependent coeffi-
cients, and the problem was reduced to an infinite set of equations of
second order.

The problem of stability of equilibrium of a mechanical system acted
upon by potential forces may be solved exactly with the help of a theorem
of Lagrange on the stability of equilibrium, in which state the potential
energy has an absolute minimum. The ¢riterion for the minimum potential
energy of a system with a finite number of degrees of freedom is well
known and is the condition for positive-definiteness of the second vari-
ation of the potential emergy. If a system has an infinite number of
degrees of freedom, then the problem is considerably more complex. The
expansion of the equation of the disturbed surface in a certain series
of functions reduces the problem of minimization to a problem of the
positive-definiteness of an infinite quadratic form, which is the result
of taking the second variation of the potential energy. For the case of
a heavy fluid it was shown {3} that this quadratic form is positive-
definite when a certain quadratic form in the variations of the coordi-
nates of the solid body is positive-definite., The latter quadratic form
is the second variation of the potential energy of the rigid body and
the frozen liquid, to which has been added a correction for the liquid
contents. The correction for the liquid contents is a quadratic form in
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the variations of the coordinates of the solid body with coefficients
which are sums of an infinite number of terms.

From the condition of positive-definiteness of the sum of these
quadratic forms it would have been possible to carry out a rigorous de-
rivation of the stability of equilibrium of the system in the sense of
Liapunov; however, for application this sum had to be calculated, and
this was done in [7] only for a particular case.

Below the problem of minimum potential energy of the system also re-
duces to a problem of minimizing & certain function of the coordinates
of the solid body, consisting of the potential energy of the frozen
system together with a8 nonpositive correction for the ligquid contents.
The expansion of this correction starts with the quadratic form in the
variations of the coordinates of the solid body with coefficients in the
form of double integrals of known functions over known regions.

1. We consider a vessel having the form of a closed rectangular
parallelepiped free to rotate about a fixed axis y passing through the
axis of symmetry of the vessel and perpendicular to its sides. If the
heavy vessel is filled with a heavy liquid, then in equilibrium the
walls of the vessel are vertical, and the free surface of the liquid is
horizontal,

Let the straight line ab be the projection of the y-axis on the sur-
face of the liquid in the equilibrium position (we will imagine it to be
rigidly attached to the vessel) and let P be a plane rigidly fixed to
the vessel and coincident with the free surface of the liquid in the
equilibrium position. If the vessel is inclined at an angle & to the
vertical, then the potential energy of the liquid in this position will
have a minimum in comparison with its other possible positions if its
surface is the horizontal plane P,; that is, the position of an incom-
pressible liquid, bounded above by the plane P;, will be possible if P,
passes through the straight line ab, and consequently satisfies the con-
dition of conservation of volume. We call this position of the system
the position 8, P,.

We put the system initially in the position 6, P, imagining that the
liquid is frozen, and we let 8U; be the variation of potential energy of
the system for this displacement. Then we transfer the liquid located
above the plane P, and below the plane P, so that it is below the plane
P,, and we obtain the position 8, P,. The variation 80U, in the potential
energy for this displacement will obviously be ne§3§ive. The total vari-
ation in the potential energy of the system is §U 2= 8U, +8U, <8U,
where U 2 depends only on the angle 8.

Consequently, in order that 8U be positive, it is necessary and
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sufficient that 501 %2 pe positive-definite. We note that for this it is
necessary that 58U, be unable to take negative values. Thus the problem
of the m1n1mum potential energy of the system is reduced to the minimiza-
tion of UM * 2 which depends only on the angle, and the solution of

this problem presents no difficulty.

In the general case we imagine a solid body with a cavity partially
filled with a homogeneous incompressible liquid of density o.

Let the position of the solid body relative to a fixed system of co-
ordinates 0, x, y, z be given by scleronomic and holonomic generalized
coordinates g; (i < 6), and let there act on it steady forces with
potentials U'(qi). The volume forces acting on the liquid are also
assumed .to have a potential W(x, y, z) odT for an element of volume dr.

When the system is in equilibrium, let the values of the g, be zero,
and let the liquid occupy a certain amount of a simply connected region
Dko, bounded by S, the surface of the cavity, and by sections of the sur-
face ¥ = «.

Let Qk be a certain point of the free surface of the liquid, M, the
geometric positions of the first points of intersection of continuous
curves with origin at Q, and lying on ¥ = «,, with the surface S. The
curve M, will be called the boundary of the surface ¥ = «, and the volume
of the liquid will be called V,. We do not exclude from consideration
the case where the simply connected region occupied by the liquid is
bounded by the sides S, and by a surface ¥ = o with a boundary consist-
ing of several closed curves th.

It is clear that in the equilibrium state the liquid volume does not
contain points ¥ > «,.

Let T, be a certain point of the boundary M, of the free surface,
n (T,) a unit vector normal to the surface S at the point T, and
directed into the cavity, n,(T,) the unit vector normal to the surface
W= «, directed to the side a > o, and 6(T},) the angle between these
normals measured from n, to n,. We assume that the angle 6 is bounded by
certain constant limits w > 6; > 6(T,) > 8, > 0 for all points T, and
for any k. We assume that the vector n, varies continuously with the
location of the points of the surface S in the neighborhood of the bound-
ary M, and we suppose that the unit vector n, normal to the family of
surfaces W = a varies continuously with respect to x, y, z in that same
neighborhood. We also assume that none of the a, is the largest of all
the possible values which ¥ can take on in the neighborhood of ¥ = a.

Let Mk be a certain closed curve belonging to the boundary of the
region for a certain value o, and given by the equation
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r=a;(t, 0 B°), Yy =yidt,w, 8%,  z=2z( ) (1.1)

where ®(x, y, z) = p° is the equation of the surface of the cavity in
the neighborhood of the boundary, t is a parameter varying between the
limits 0 < t < 19, and the functions x., ¥;, z. are periodic in t with
period 1°. According to the assumptioné made céncerning the properties

of the normal, the vector

i j k
W W W aw oD oW oy,

oz dy dz =(—az—/——67-—a—za—y')l+
ley) o0 o0

oz oy 0z

vanishes nowhere in a small region of the curve ¥, .. Consequently,
according to the existence theorems for implicit functions there exist
functions

z = z; (¢, o + Ax, B°, qi), y=1y; @t ax + A, B°, qy) (1.2)
2=zt + A, B° q)) (O<t<I,i<H)

which are solutions of the equations
W (z, y, 2) = ax + Aa, D' (z, y, 2, q:) = B (1.3)

where 0’ = B° is the equation of the surface of the cavity when the
solid body is displaced from its equilibrium position. When Z47i2 +

A® - 0, the functions (1.2) transform continuously into the functions
(1.1). The continuity of these functions is uniform in t, hence they
will also be periodic with the same period 1°, and consequently the
curve (1.2) is closed. This means that the region D, ’'(Aa, qi), bounded
by the surface ¥ = o, + Ax and the surface S, and which transforms con-
tinuously into the region Dko as Zqi2 + ba® - 0, will also be simply
connected and will contain only the points W < o, + Aa.

If q; varies in the closed region r? = Zqi2< H?, where H> 0 is a
sufficiently small constant, then for every a, a constant y, > «, can be
found such that for any g; taken from this region, the surface of the
cavity S and the surfaces W = y,, ¥ = o + Ax will bound a closed region
Ck(Aa, Y, qi) which does not contain the point W < «; + Aa.

Here, as well as in what follows, by the surface ¥ = «, + Ax we will
mean the portion of this surface which as Zeqiz + Ma? = 0 transforms
continuously into the free surface ¥ = a, of the liquid in the equi-
librium position. The existence of the surface ¥ = y, follows from the
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previous considerations as long as y, is close to a,. However, in many
cases of practical importance y, may be taken sufficiently far from

aj * Ax, but if the region bounded by the surface S is closed, then it
may turn out that any possible displacements of the liquid do not cross
a certain surface ¥ = y,, where the value y, depends only on the radius
of the sphere r? = H. The surface Yy, as we shall see below, plays a
significant role in the determination of stability.

2. We now assume that for given g, the liquid completely fills the
region D, "(Ax, g;). It is not difficult to see that the potential energy
of this liquid volume has a minimum with respect to all possible posi-
tions of the liquid for given g; which do not exceed the limits of the
region C,(Ax, y,, 7;). Actually, when any particle of liquid passes
across the surface ¥ = «, + Ax it goes into the region C,(Ax, y,, q;)
and as a consequence its potential energy is increased. The position of
the fluid occupying the whole region D,”(Aa, q;) will be possible if the
volume V,” of this region equals the volume V,, i.e. the condition of in-
compressibility will be satisfied.

We now address ourselves to the determination of the Aa for which
this condition will be satisfied.

If the liquid is frozen in the equilibrium position and then the
frozen system is displaced, then the equation of the frozen surface for
any position of the body will be W(x', y', z') = a, where 0, z°, y', z’
is a system of rectangular coordinates attached to the solid body and
coincident with the fixed system O, x, y, z in the equilibrium position.
In the following we will also call this surface the frozen surface and
denote its boundary by M,’, while the region containing the frozen liquid
we will call D, .

We denote by E (Ax, q,) the "difference" of the regions D;"(4a, g,)
and D,’, i.e. the totality of points belonging to D,’ and not belonging
to D" (Aa, q;), which make up the region F,, and the totality of points
belonging to D,” and not belonging to D,’, which constitute the region
G-

As was shown above, the region F, consists of the points
W (z', y', 2') < a, W (z, y, 2) > ax -+ Aa, inside S
and the region G, consists of the points
Wz, y, 2) > a, W (z, y, z2) < ax + Aa,inside S
The region £, is the "sum" of the regions G, and F,.

We now assume that there exists a one-to-one transformation which is
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continuously differentiable

$=I(§,T},§), y=y(§:ﬂ;€), Z=z(§,fl,§)

in a certain neighborhood of the free surface ¥ = «,, and that in this
neighborhood the Jacobian of the transformation is

Dz, vy, 2
T=3Eap >8>0
We also assume that 0l /9( is bounded by the limits 0<a<oW/3[<b
and is continuous in this same neighborhood, and consequently 1/a >
9/ 9W > 1/b > 0 in this neighborhood. The latter two limits are not of
importance, but are introduced to simplify the proof.

The condition of conservation of volume takes the form

Wy = Sdr— Sd’t=$dt—gdr =0

DY Df G Fy 2.9

Let €', n’, [’ be curvilinear coordinates connected rigidly to the
solid body and transforming into g, uE { in the equilibrium position,
and let the coordinates §’, n’ vary in the region P, . in ranging over
the portion of the frozen surface bounded by the closed curve Mk be-
longing to boundary M,'.

Let the function W(x’, y’, z’) transform into the function W'(§’,
n', ') under the transformation to coordinates §’, n’, (", while the
functgon W(z, y, 2z) transforms into the function

W e, e =W 6L, D)+ S s+ 00

where O(r) is a small quantity of higher order than r. Let { vary
according to the equations {' = ¥(§', n', o *+ bx, q; ), P =YE', 0,
ay, 0) = ¥° as the point moves along the surfaces ¥ = o, + b, ¥’ = q,
respectively, where the right hand sides of the equations are single-
valued, continuous in all the arguments, and differentiable with respect
to «a.

The condition of conservation of volume (2.1) may be written

WV = Z;& di'dn’i Jay +0()  (r*=Yer+awt) (22

b ki

Here O(r') represents the algebraic sum of the volumes adjoining on
M,;" and bounded by the following surfaces: the cylinder £’ = §,'(¢),
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n’ =ny"(¢) passing through the curve ¥, .', the surface S and the sur-
face {* = ¥, where these volumes have a plus sign if they belong to the
region G, or are outside the region F,, and a minus sign in the opposite
case. The section of any such region cut by a plane R perpendicular to
the contour M, .’ at the point T} will be a curvilinear triangle T)AB
with the side "T\A lying on the cylinder, the side T} B lying on the sur-
face of the cavity, and the side AB lying on the surface {' = ¥Y(W(x, y,
z) = ap + ba). The height of this triangle dropped from the vertex T,
will vanish together with Ax. The angle B~ 8 as r' - 0, and consequently
for r' sufficiently small this angle lies between the limits w > 8, >
B> g, > 0.

As r’ - 0, the angle A approaches the angle AT,L, where T,L is the
line of intersection of the plane R and the frozen surface. It is not
difficult to see that this angle also lies between similar limits.
Actually, on the frozen surface 1/a >3[’/3W' > 1/b, since it is clear
that 37/ 0W on the free surface of equilibrium is identical to 37’/ oW’
on the frozen surface. This means that the angle ¢ between the curve
=8, n=ny directed towards the side a > a,, and the frozen surface
at all points exceeds a certain limit ¢;, > 0. From the continuity of
37"/ oW it follows that the angle AT,L also lies between the limits
w> ¢ > [_ATL>¢, > 0. The above considerations show that the area
of the triangle T,AB is of order r’ % and is of the same order as the
algebraic sum of the volumes of the regions under consideration.

Introducing in place of { the variable u = ¥” -~ «,, we rewrite equa-
tion (2.2) as follows:

v
Wi=2 &g ddy T Zkdp +0() =0 (5,=3T g r00) @3
Au 2

J

where the partial derivative 9W” %3q. is calculated on the frozen sur-
face ¢’ = ¥ Noting that

5 = O D, T =T 400 +|p)

we rewrite {2.3) in the form

8y = m@ﬂ Jo 2 g’ — KK o X 2,3;;’ gudE’ dy +0 () =
i 3 i Py

= Ao -—Zx,,jqi +0@)=0

Since v, > 0, this equation has the unique solution
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Aoy = 71-2 Aiigi -+ O (1) (2.4)
*5

Thus for every k there exists a Aa,(g,;) such that for any r < H,
there is a possible position of the liquid, completely filling the
region D" (Aay, g;), for which the potential energy of the liquid attains
a minimum in comparison with all other possible positions within the
region C, + D,".

3. The potential energy of the system will have in this sense a
minimum in the equilibrium position if the function

Unin = U’ (q) + 6 D) S Wdr
D"
which depends only on g; has a minimum. It may be represented in the
form

Unpin= U +03 & W dv +[52g Wdf—cE& Wdr]
k D kB, k By
We denote the sum of the first two terms, representing the potential
energy of the frozen system, by U, and the remainder, enclosed in
brackets, by U,. We note that by hypothesis U, is never positive. The
second variation of U, may be found by the usual method, and therefore

we address ourselves to the calculation of U,; we have

UzzzUzk
k
U2k=0‘§ Wdv —o S Wdt =o¢ S (ak—}—p)dr—-og(ak-i—p)dr =
%" Dy’ Gy Fy
=0 \pdt—o&pdt (3.1)
Gie Fy

The last equality was written on the basis of the condition of con-
servation of volume (2.1). Making further transformations as in Section
2, we obtain

Aoy
Une = GZSS dt’ dy’ S W e dp — O (7) =
J p o

kj
=5 I Baw — 02 J° St dn + 0 =

i Prj
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(Z 3'391)%"'“" \g Qj a;jf“ r;e) J° 6‘21’;,"«&1&’&11 +0(rY

i Py;

Using the well-known inequality

S fidv > (Q f&:f

one may convince oneself that the sum of the second order terms may not
take on positive values. However, it may happen that U, does not depend
on all the coordinates. For example, let U (q,) depend only on one co-
ordinate and let W” have the form

4 t4 i 4 r aW” ’! ’) I? ¥ N
Wr=wg, g + T B B e g 4 (g

where O(q,)/q, = 0 as q; =0 uniformly for all §', n’, {’ in the
neighborhood of the frozen surface and for all permissible g,, ¢;, ... .
Then repeating the previous arguments, we obtain

AW (0, ¢a, .. .} \? ’ gt 9
/A RIC R r : 1&8( i) Yopdy an + 0 =
L4

= ';‘N(%s g5---)9°

If it turns out that

U \°
(5) + 3N @ gs..)>0

for any q,, q,, ..., then the potential energy of the system will have a
minimum with respect to g, and for arbitrary disturbances of the liquid
which do not cross the surface W = y,. This case occurs in the problem
of the stability of equilibrium of a pendulum filled with a heavy liquid.

It is necessary to note also the following circumstance. All of the
double integrals above depend only on the form of the free surface in
the position of equilibrium, i.e. the form of the function W and the
form of the curve My of intersection of the free surface and the walls
of the cavity, and they are independent of the form of the surface of
the cavity in the neighborhood of this curve. This means that the second
variation of the potential energy of the system does not change if the
shape of the cavity changes, so that the potential energy of the frozen
system and the curve N, remain as before. The second variation of the
potential energy depends only on the volume and surface integrals, hence
it does not change sign if the cavity S is replaced by the cavity S,
provided the volume consisting of the points of S’ not belonging to S



904 G.K. Pozharitshkii

and the volume consisting of the points S not belonging to S’ are suffi-
clently small, and the whole region Dko transforms continuously into a
simply connected region. This is also true if the volume Vk of the liquid
changes by little and the surface of the cavity is subject to the condi-
tion that the "projection" of the boundary ¥, on the "plane” { = {,
varies by a sufficiently small amount, i.e. the area bounded by the old
and new projections is little changed. This means that if some stability
criteria are obtained from the sign of the second variation, then they
will be valid for variations in the shape of the cavity and the quantity
of the liquid which are small in the above sense.

4. Following Liapunov [8], we introduce the following definition. We
assume that the liquid belonging to a certain region Dk° in the equi-
librium state is perturbed, and we consider the surface of the liquid at
an arbitrary instant during its perturbed motion. From any point of this
surface we imagine a pencil of straight lines joining it with all points
of the surface of the equilibrium volume V,, and from the segments of
these lines between the chosen point of the liquid surface and the equi-
librium surface we choose the smallest. By the equilibrium surface we
mean the free surface and the walls of the cavity wetted by the liquid.
Considering all points of the disturbed surface of the liquid, we choose
the largest of these segments. We denote this positive quantity by N and
call it the distance of the surface of the liquid from the equilibrium
surface.

As before let V, be the volume of the liquid and let g, be the volume
all points of which belong to both of the two regions, one bounded by
the surface of the liquid and the other by the equilibrium surface.-We
call the difference V, - g, the displacement of the liquid from the
equilibrium state and denote it by A. If all possible surfaces of the
liquid are considered for which the distances from the equilibrium sur-
face are equal to a given quantity N, then it is clear that for these
surfaces A may take on all values between zero and a certain limit de-
pending on N which for N = 0 reduces to zero. Any single-valued and con-
tinuous function of N taking on only those values that A may attain for
the same N and reducing to zero for N = 0 we will call a possible dis-
placement and denote ¢(N). We assume also that the motion of liquid is
such that N and A are continuous functions of the time t.

Definition. We impart to the system arbitrary dlsplacements and velo-
cities and consider the subsequent perturbed motion. If 2‘310 = roz,
the initial distance N, from the equilibrium surface and the initial
magnitude of the k1net1c energy T, may be chosen sufficiently small for
all possible values of the rest of the initial data, so that r, the dis-
tance N of the liquid surface from the equilibrium surface and the
kinetic energy T remain less than certain prescribed limits, no matter
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how small, for all times during the motion or at least until the dis-
placement of the liquid from the equilibrium position does not become
less than a certain prescribed possible displacement, no matter how
small, then the equilibrium state under consideration is stable,

All possible initial data must be subject. to the condition that the
functions N and A corresponding to these quantities must be continuous
functions of t during the entire motion.

For our problem, however, it will be convenient to consider the dis-
tance N and displacement A of the perturbed surface, not from the equi-
librium surface, but from the boundaries of the region D,".

We consider now the region Cyly,, Ag,, q;)
w <\<‘ Tk w - -4 Ady within S

and treat n, as the minimum distance of a point on the surface ¥ =
from the boundaries of the region D", Varying r within the limits r
where H > 0 is some small constant, we find N, the minimum value of n,.
We consider any possible displacement ¢,(N), and from all possible posi-
tions of the system satisfying the inequalities A » ¢(N), N <N, r<H,
we choose that position for which U attains its smallest possible value

U, > 0.
¥y

We choose the initial conditions so that the following inequalities
are satisfied:

k
¥< 1,

To+ Uy <Unyr Do gx (V)

If the energy of the system is conserved or if energy is dissipated,
then

0<U < Un, for Azq,(N)

Actually, if U becomes zero, then before that happens N, which varies
continuously, must become equal to N,. This may occur only if the in-
equality A > ¢,(N) is violated before U becomes zero, since U > 0 for all
A > q’k(N) .

If however the inequality A >,(N) is not violated, then neither is
the inequality 0 < U< UN*‘

If the last inequality is satisfied, then the inequality

N<Ni r<HTUy,
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will be satisfied also.

Thus we come to the conclusion that in order that the system be stable
in the above-mentioned sense, it is sufficient that U , be a positive-
definite function of g;. This proof, with certain differences in detail,
was carried out by Rumiantsev [9].

Up to now we have been concerned with a cavity with one simply-
connected volume D,°. If there are several such volumes, then if all of
the quantities having index k are understood to refer to the kth simply-
connected volume, and T is understood to be the kinetic energy of the
system, then by a similar argument we obtain the analogous results.

We continue the discussion, considering Dko to be a single simply-
connected volume.

If the cavity and the function W are such that the region, lying with-
in the cavity and outside the region D,”, into which a liquid particle
may pass from the region D,” without crossing the walls of the cavity,
does not contain the points ¥ < o, + Aa,, then the position of the liquid
completely filling the region D,”, attains the minimum potential energy
of the liquid for given g, in comparison with all attainable displace-
ments of the perturbed surface. In this case a more definite criterion
regarding the stability of the liquid may be obtained. This definition
also follows Liapunov [8). However, he did not make use of this defini-
tion, since in using only one energy integral, stability in the sense of
this definition can be shown only for one of the problems considered by
him - the problem of the stability of the spherical equilibrium shape of
a liquid mass under the influence of gravity.

Definition. If for any positive U, o', 8 less than certain limits
there can be found limits U, g,", 8, such that for arbitrary initial
values of r, the kinetic energy T,, and the displacement A, subject to
the inequalities

ro < Hy, Ty < 0, Ay < By
the inequalities

r<H T<o, AL

will be satisfied for all times during the motion, then this equilibrium
state of the system is stable. We will call this stability with respect
to the displacement r and T.

Let U S be the minimum value of U . ~on the sphere r = = H and let
d, > 0 be a constant such that for A > 5, r < H the inequality U> U7 ©
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is satisfied.

If the system conserves energy or if energy is dissipated, and if T,,
ro and A, are chosen so small that the inequality

Ty + Up < Unin
1s satisfied, then the inequality

0<U < Unminy T < Upmm

will be satisfied for all times during the motion, as will the inequal-
ities

r<H, T<Upn A<
which are consequences of them.

This means that if the cavity and the function W are such that the
position of the liquid completely filling the region D, makes the
potential energy of the liquid a minimum with respect to all possible
displacements of the liquid surface, and if U, is a positive-definite
function of q;, then the equilibrium position of the system will be
stable with respect to r, T, A.

If the cavity has several simply connected volumes D,° which are not
interconnected, i.e. a particle may not pass from one volume into another
without crossing the walls of the cavity, "the definition and the proof
are similar.

Let the body in the equilibrium position have two simply connected
regions DIO, D,° corresponding to the same value a = @, = a,, and let the
cavity be such that the liquid may be transferred within the cavity from
one volume into the other.

We consider a possible position of the liquid, corresponding to some
values of g, and where the liquid completely fills the regions D,” and
D,”, bounded at the "top" by the surface « + Ax, which is the same for
both regions, and where this surface is obtained from the condition of
conservation of the sum of the volumes, V, + V,. If the empty portion of
the cavity does not contain the points W < « + Ax, then in such a posi-
tion of the liquid its potential energy will reach a minimum with respect
to any displacements of the liquid particles which are possible for given
g;,» and the condition of definiteness of the function U , will be a
sufficient condition for stability with respect to r, T, A.

Since we make use of the condition of conservation of the sum of the
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volumes, it is not difficult to see that the conditions of positive-
definiteness of U, are obtained the same as they would be if the
regions D,° and D,° were connected by an infinitely thin channel, lying
completely underneath the surface W = «, i.e. if the problem were solved
for a simply connected volume.

8. Example 1. The problem of Sretenskii (1]. we consider a certain
generalization of the problem of Sretenskii. Let the constraints on the
body be such that they allow only translational displacements of the body
from the equilibrium position, and let its cavity be filled with a heavy
liquid. If the potential energy of the frozen system has a minimum in the
equilibrium position, then the equilibrium is stable. Actually, for any
fixed displacements of the body the minimum potential energy of the
1iquid will be attained in the case where the surface of the liquid be-
comes horizontal and stationary with respect to the body. Consequently,
in this case U2 = 0 and U will always be positive if U1 proves to be
positive. It is also not difficult to see that 1f the cavity is covered
by a horizontal 1id, if the walls of the cavity are vertical, and if the
liquid occupies a single simply connected volume, then the stability
with respect to the displacement r, 7 will follow from the positive-
definiteness of U,.

Exanple 2. A spherical pendulum containing a liquid.

We consider a heavy solid body with a fixed point O and a cavity
filled with a heavy liquid. The fixed axis :z is directed upwards. We
choose as generalized coordinates the Euler angles ¢', y’, 6'. We denote
by — I(l > 0) the coordinate of the center of gravity of the frozen
system in the equilibrium position, and by M its mass. It is convenient
here to choose the coordimates x', y', z' in the moving system for the
parameters £', n', [’; for the case of a heavy liquid

”

2
W =gz = g|z’ cos0' + sin & (=’ sin ¢’ 4 y" cos ¢')}, 230

. = g (2'sin @’ -+ ¥’ cos ¢’)

o'z

28805 = — 0% (J' — md®) = — a (@} 0%, J' =g SS {z’ sin @’ -+ ¥ cos ¢’} dx’ dy'
p2

AR C
— md? = — og v A= S\ (=" sin ¢’ + ¥ cos @) dz’ dy’, v = Sg dx' dy’
P P

The explanation of the notation introduced here follows: P is the sur-
face consisting of the points of the frozen surface; J is the moment of
inertia of the surface P about the axis x’ sin ¢’ + y' cos ¢’ = 0, where
a unit area is assumed to have mass og;, ogh is the first moment of the
surface about the same axis; v is the area of the surface, = is the mass
of the surface, d the distance from the center of gravity of the surface
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to the axis x’ sin ¢’ + y' cos ¢’ = 0, and o(¢) the moment of imertia of
this surface about the parallel axis through the center of gravity.

Let Ag be the maximum value of a(¢). Then the equilibrium position of
the system will be stable if

A
I—M—>0

If the cavity is a closed cylinder with generators parallel to the :z-
axis, then there will be stability with respect to 6, T, 5. This result
was obtained by Moiseev [7] for a cavity having a rectangular surface P
symmetrical about the projection of the axis y’ on it.

Example 3. The stability of a pendulum filled with a liquid in gravi-
tational and centrifugal force fields. We consider a right-hand rectangu-
lar coordinate system x, y, z with origin at the fixed point O and the
vertical z-axis directed upwards, rotating about the :-axis with a con-
stant angular velocity w, and a heavy solid body able to rotate about the
y-axis with respect to the x, y, z system., In the following we will under-
stand motion to be motion with respect to this system. The cavity in the
body is assumed to be filled with a homogeneous incompressible heavy
liquid. The body and liquid will be in equilibrium if the center of
gravity of the system lies on the :-axis at a distance ! below the point
of suspension, while the axis is a principal axis of inertia of the
system at the point O. The free surface of the liquid will take the shape
of the paraboloid

w 2
i @t W= —BE@ ) =—a

We assume that the cavity has the form of a surface of revolution S
about the :z~axis and is intersected by the paraboloid along two circles
lying in planes z = — h and z = — h — H with centers on the z-axis and
radii d; and d2 respectively:

dy>d;, dPB=a—h, dPB=a—h—H

We recall also that the normals to the surfaces W/g = — a and S form
a nongero angle on the lines of intersection.

It 0, =’, y', z’ 18 a moving coordinate system attached to the solid
body and coinciding with O, x, y, z in the equilibrium position, and 6’
is the angle of deviation of the z’'-axis from the z-axis, then the
formulas for the coordinate transformation are

z=1z"cos®’ — 2z sin 6, y=y, z=12'8in0' 4 2 cos &’
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The functions in W/g are written in terms of these variables as

w
2 = 2’23 sin? 6’ - (cos 8 4- B2’ sin 20") 2’ — B2 cos? O — By'? 4 2’ sin

1 oW
Z = 2?3 sin 26" + (— sin &' -+ 232" c0520) 2 — Bx?5in 20 - =" cos &

Taking 8’ = 0, we obtain

1 oW
'—g—'a-g,— 0'20: 23%2 +x
On the frozen surface W/ g = z' - ﬁ(x'z + y'?y = = a, hence
{4 aWe

7 e = WP EE+YE—a

In moving cylindrical coordinates z', x" = pcos ¥, y' = p sin ¥ we
have

1 aW”O
o g5 —=pcos¥ 4 2Bpcos ¥ BpP—a)

The region of integration on the plane :z’ is bounded by the circles

p = d; and p = d,(d; > dy). In order to calculate 5202, as was shown
above, it is necessary to calculate:

an

& aw? ’a”e'— = (4.1)

S
—-6ng..ch S g d¥ [p cos ¥ + 2Bp cos ¥ (Bp? — a)}? =
S

= 20807 \[(i 2a8) p -+ 28%°]? pdp =
d,
873 [ (1 — 2a8)? (dy* — dy 2 (4 — 2 &8 — .8 4 (g8 — .8
_ [( o) 2 ) B 2>]

We now assume that the body is homogeneous and symmetrical about the
2 -axis and the cavity is a circular cylinder with axis :z', radius R and
height H, with walls at z' = - h, z' = — h — H. Let the volume of the
1iquid in this cylinder equal &V, where V = TR%H is the volume of the
cylinder, and & is the coefficient of fullness.

Let the angular velocity w of the body be increased, starting from
zero. The paraboloid initially will be intersected by the lateral sur-
face of the cylinder. Then, depending upon &, R, and H, it may be inter-
sected by the lateral surface and the bottom end or by only the top end,
and then for » sufficiently large it will be intersected by both the top
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and bottom ends. We consider the last case, for which
BRE+h>a>h+4+H

Let o =a- h — H be the distance from the vertex of the paraboloid
to the bottom end of the cylinder. Then the previous inequality takes
the form ﬂ32 ~ H> «; > 0. From the condition of constancy of volume of
the liquid we find

=BR2(1 —-a)--g (4.2)

This is correct if B is larger than the greatest of the numbers
H/2R%e and H/2RE(1 - ¢).

Under these conditions formula (4.1) is simplified to

dy 1~-2Bh
73 3 4
o0y = — T 11428 (Bp — )t oo = — T
d, 1—2B(H4-h)
u=1-+428(Bp*—a)

Denoting h, = h + H/2, integrating and making use of (4.2), we obtain

U — (1 —2aB)] u?du

62Ug——~92n6g5[,g; hlgz—}—ﬁi%g:-a—)m}?“(iwe)kl-%-
R\ H?
TRt — ey b 4 USRI (4.3)

The potential energy of the frozen system is

Uy==(ruly + mely) g (1 ~ cos®') — (B + By — J;) Bg

Jz = {B -+ By) cost 8’ 4 (C 4 Cy) sin2 &

e RA (28 — g3 .
gmaly = 6mgH [328h1 + ‘12—3] »  By=onH [_____(_2__5_)___ %i’

Ri(2e —g?) H? th‘ R H?
C‘:""H[—Z‘_ g + R’ + 5 “Tr]

Here =;, m, are the masses of the body and the liquid, 11, 12 are the
distances of the centers of gravity of the heavy body and the frozen
liquid from the point of suspension, 31' B2 are the moments of inmertia
of the body and the frozen liguid about the :-axis, and C, C1 are the
moments of inertia of the body and the frozen liquid about the y’-axis.
For the second variation of U, we obtain

R%eh R (2e—e?
o =| "5 + (B — ) Bg] 01 4 omgrr [ T3 4 gy 4 B e

H? mH®  ReHB
—ggg T MehB — g3 ]

(4.9)
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As a result we obtain

1
8V pin = 8y + 8%0p = 5~ (muhg + (B — C) 0%) 674

m, e ®? [ R* (28 — e?) H? (1—e)g?
+T[(1—7)"1€+‘z’(”*——*4 —h12~72")—”_“‘zw2 ]‘”
In order that the condition of positive-definiteness of 82U will not
be vioclated as ® increases, it is sufficient that
~my f R?(2e —¢g%) H?
B—C+T;(W4 —hf‘*—ﬁ)>0

It is not difficult to see that in the given case the positive-
definiteness of s%u guarantees stability with respect to 8', T, A.
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